If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-30t-30=0
a = 1; b = -30; c = -30;
Δ = b2-4ac
Δ = -302-4·1·(-30)
Δ = 1020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1020}=\sqrt{4*255}=\sqrt{4}*\sqrt{255}=2\sqrt{255}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{255}}{2*1}=\frac{30-2\sqrt{255}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{255}}{2*1}=\frac{30+2\sqrt{255}}{2} $
| f(-5)=5-2 | | 10(x-5)=9x+5) | | 3x2+2x–8=0 | | 5w-10=4-2w | | 1x+3x+6=90 | | 10(x-5)=9x+5 | | 6/7y-13=-7 | | 8/5y-10=-2 | | 3(w-1)+3=1-2w | | -5n−10=-10n+10 | | 6,9x=15,18 | | -1/2(6x-12)=-3(x-6) | | -5(u+6)=5u+40 | | -6(5w+9=) | | 5(7-z)4=-z | | 4x2−10=−9 | | 6+7z=2+8z | | 5x+8*2=6x+56 | | -n+7=-2n | | 7u-35=5(u-5) | | 18=m/4+15 | | 3x+26+2x-1=49-4x+39 | | x+0.03x=148 | | 9/8x-11=-2 | | 9x=114 | | 6(7-z)/5=-7 | | 9/10x+5=12+1/2x | | 35=-9x | | 2(m+1)-5(m-4)=28 | | 9/5p=54/5 | | 5t+26=6-5t | | 9/10x+5=12+1/2 |